Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1379076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660221

RESUMO

Exposure to microgravity (µg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to µg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to µg and 1 g conditions provided by an onboard centrifuge. BCs exposed to µg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in µg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between µg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC µg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to µg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after µg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from µg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.

2.
Neurosci Lett ; 826: 137724, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467271

RESUMO

Dorsal root avulsion injuries lead to loss of sensation and to reorganization of blood vessels (BVs) in the injured area. The inability of injured sensory axons to re-enter the spinal cord results in permanent loss of sensation, and often also leads to the development of neuropathic pain. Approaches that restore connection between peripheral sensory axons and their CNS targets are thus urgently need. Previous research has shown that sensory axons from peripherally grafted human sensory neurons are able to enter the spinal cord by growing along BVs which penetrate the CNS from the spinal cord surface. In this study we analysed the distribution of BVs after avulsion injury and how their pattern is affected by implantation at the injury site of boundary cap neural crest stem cells (bNCSCs), a transient cluster of cells, which are located at the boundary between the spinal cord and peripheral nervous system and assist the growth of sensory axons from periphery into the spinal cord during development. The superficial dorsal spinal cord vasculature was examined using intravital microscopy and intravascular BV labelling. bNCSC transplantation increased vascular volume in a non-dose responsive manner, whereas dorsal root avulsion alone did not decrease the vascular volume. To determine whether bNCSC are endowed with angiogenic properties we prepared 3D printed scaffolds, containing bNCSCs together with rings prepared from mouse aorta. We show that bNCSC do induce migration and assembly of endothelial cells in this system. These findings suggest that bNCSC transplant can promote vascularization in vivo and contribute to BV formation in 3D printed scaffolds.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Crista Neural , Células Endoteliais , 60489 , Regeneração Nervosa/fisiologia , Raízes Nervosas Espinhais/lesões , Medula Espinal , Axônios/fisiologia , Impressão Tridimensional
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628601

RESUMO

Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.


Assuntos
Células-Tronco Neurais , Organoides , Gelatina , Humanos , Crista Neural , Medula Espinal
4.
Cells ; 10(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571835

RESUMO

Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.


Assuntos
Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Raízes Nervosas Espinhais/patologia , Animais , Axônios/patologia , Gânglios Espinais/patologia , Humanos , Regeneração Nervosa/fisiologia , Neuroglia/patologia , Células Receptoras Sensoriais/patologia
5.
Biotechnol Bioeng ; 118(10): 3832-3846, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34125436

RESUMO

Understanding how stem cells adapt to space flight conditions is fundamental for human space missions and extraterrestrial settlement. We analyzed gene expression in boundary cap neural crest stem cells (BCs), which are attractive for regenerative medicine by their ability to promote proliferation and survival of cocultured and co-implanted cells. BCs were launched to space (space exposed cells) (SEC), onboard sounding rocket MASER 14 as free-floating neurospheres or in a bioprinted scaffold. For comparison, BCs were placed in a random positioning machine (RPM) to simulate microgravity on earth (RPM cells) or were cultured under control conditions in the laboratory. Using next-generation RNA sequencing and data post-processing, we discovered that SEC upregulated genes related to proliferation and survival, whereas RPM cells upregulated genes associated with differentiation and inflammation. Thus, (i) space flight provides unique conditions with distinctly different effects on the properties of BC compared to earth controls, and (ii) the space flight exposure induces postflight properties that reinforce the utility of BC for regenerative medicine and tissue engineering.


Assuntos
Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Voo Espacial , Tecidos Suporte/química , Simulação de Ausência de Peso , Ausência de Peso , Animais , Camundongos , Camundongos Transgênicos , Engenharia Tecidual
6.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925105

RESUMO

Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (αME) of the magnetoelectric effect. Another strategy is the use of 3-component composites through the inclusion of piezoelectric BaTiO3 particles. Developed strategies allow us to increase the αME value from ~5 mV/cm·Oe for the composite of randomly distributed CoFe2O4 nanoparticles in PVDF matrix to ~18.5 mV/cm·Oe for a composite of magnetic particles in PVDF-TrFE matrix with 5%wt of piezoelectric particles. The applicability of such materials as bioactive surface is demonstrated on neural crest stem cell cultures.

7.
Sci Rep ; 10(1): 20675, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244084

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating incurable neurological disorder characterized by motor neuron (MN) death and muscle dysfunction leading to mean survival time after diagnosis of only 2-5 years. A potential ALS treatment is to delay the loss of MNs and disease progression by the delivery of trophic factors. Previously, we demonstrated that implanted mesoporous silica nanoparticles (MSPs) loaded with trophic factor peptide mimetics support survival and induce differentiation of co-implanted embryonic stem cell (ESC)-derived MNs. Here, we investigate whether MSP loaded with peptide mimetics of ciliary neurotrophic factor (Cintrofin), glial-derived neurotrophic factor (Gliafin), and vascular endothelial growth factor (Vefin1) injected into the cervical spinal cord of mutant SOD1 mice affect disease progression and extend survival. We also transplanted boundary cap neural crest stem cells (bNCSCs) which have been shown previously to have a positive effect on MN survival in vitro and in vivo. We show that mimetic-loaded MSPs and bNCSCs significantly delay disease progression and increase survival of mutant SOD1 mice, and also that empty particles significantly improve the condition of ALS mice. Our results suggest that intraspinal delivery of MSPs is a potential therapeutic approach for the treatment of ALS.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/patologia , Sobrevivência Celular/efeitos dos fármacos , Dióxido de Silício/farmacologia , Esclerose Amiotrófica Lateral/metabolismo , Animais , Células Cultivadas , Medula Cervical/efeitos dos fármacos , Medula Cervical/metabolismo , Medula Cervical/patologia , Modelos Animais de Doenças , Progressão da Doença , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Crista Neural/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962107

RESUMO

Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell-cell communication in a wide range of embryonic developmental processes and in fetal-maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood-brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., "liquid biopsies", but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.


Assuntos
Axônios/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Esclerose Amiotrófica Lateral/metabolismo , Barreira Hematoencefálica/metabolismo , Comunicação Celular , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/prevenção & controle , Células-Tronco Neurais/citologia , Placenta/metabolismo , Gravidez , Regeneração/genética
9.
J Biomed Mater Res A ; 108(6): 1274-1280, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061005

RESUMO

Optimal combination of stem cells and biocompatible support material is a promising strategy for successful tissue engineering. The required differentiation of stem cells is crucial for functionality of engineered tissues and can be regulated by chemical and physical cues. Here we examined how boundary cap neural crest stem cells (bNCSCs) are affected when cultured in the same medium, but on collagen- or laminin-polyacrylamide (PAA) scaffolds of different stiffness (0.5, 1, or ~7 kPa). bNCSCs displayed marked differences in their ability to attach, maintain a large cell population and differentiate, depending on scaffold stiffness. These findings show that the design of physical cues is an important parameter to achieve optimal stem cell properties for tissue repair and engineering.


Assuntos
Crista Neural/citologia , Células-Tronco Neurais/citologia , Tecidos Suporte/química , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Colágeno/química , Laminina/química , Camundongos , Engenharia Tecidual
10.
Front Cell Neurosci ; 13: 346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474832

RESUMO

Mutations in superoxide dismutase (SOD1) are the second most common cause of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the death of motor neurons in the brain and spinal cord. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles, such as mitochondria and ER, disrupting their functions. Here, we demonstrate that mutant SOD1 binds specifically to the N-terminal domain of the voltage-dependent anion channel (VDAC1), an outer mitochondrial membrane protein controlling cell energy, metabolic and survival pathways. Mutant SOD1G93A and SOD1G85R, but not wild type SOD1, directly interact with VDAC1 and reduce its channel conductance. No such interaction with N-terminal-truncated VDAC1 occurs. Moreover, a VDAC1-derived N-terminal peptide inhibited mutant SOD1-induced toxicity. Incubation of motor neuron-like NSC-34 cells expressing mutant SOD1 or mouse embryonic stem cell-derived motor neurons with different VDAC1 N-terminal peptides resulted in enhanced cell survival. Taken together, our results establish a direct link between mutant SOD1 toxicity and the VDAC1 N-terminal domain and suggest that VDAC1 N-terminal peptides targeting mutant SOD1 provide potential new therapeutic strategies for ALS.

11.
Expert Opin Biol Ther ; 18(8): 865-881, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30025485

RESUMO

INTRODUCTION: Amyotrophic Lateral Sclerosis (ALS) is a progressive, incurable neurodegenerative disease that targets motoneurons. Cell-based therapies have generated widespread interest as a potential therapeutic approach but no conclusive results have yet been reported either from pre-clinical or clinical studies. AREAS COVERED: This is an integrated review of pre-clinical and clinical studies focused on the development of cell-based therapies for ALS. We analyze the biology of stem cell treatments and results obtained from pre-clinical models of ALS and examine the methods and the results obtained to date from clinical trials. We discuss scientific, clinical, and ethical issues and propose some directions for future studies. EXPERT OPINION: While data from individual studies are encouraging, stem-cell-based therapies do not yet represent a satisfactory, reliable clinical option. The field will critically benefit from the introduction of well-designed, randomized and reproducible, powered clinical trials. Comparative studies addressing key issues such as the nature, properties, and number of donor cells, the delivery mode and the selection of proper patient populations that may benefit the most from cell-based therapies are now of the essence. Multidisciplinary networks of experts should be established to empower effective translation of research into the clinic.


Assuntos
Esclerose Amiotrófica Lateral/terapia , Transplante de Células-Tronco/tendências , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Transplante de Células-Tronco/métodos
12.
Stem Cells Dev ; 26(14): 1065-1077, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562227

RESUMO

Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (MesoMIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along "bridges" formed by migrating stem cells. Coimplantation of MesoMIM prevented stem cell migration, "bridges" were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular "bridges" in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient alternative way to induce sensory axon regeneration, and (3) a combinatorial approach of individually beneficial components is not necessarily additive, but can be counterproductive for axonal growth.


Assuntos
Axônios/patologia , Regeneração Nervosa , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/patologia , Raízes Nervosas Espinhais/fisiopatologia , Animais , Diferenciação Celular , Movimento Celular , Cistos Glanglionares/patologia , Humanos , Camundongos , Células-Tronco Neurais/transplante , Neuroglia/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco
13.
Regen Med ; 12(4): 339-351, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28621171

RESUMO

AIM: During development, boundary cap neural crest stem cells (bNCSCs) assist sensory axon growth into the spinal cord. Here we repositioned them to test if they assist regeneration of sensory axons in adult mice after dorsal root avulsion injury. MATERIALS & METHODS: Avulsed mice received bNCSC or human neural progenitor (hNP) cell transplants and their contributions to glial scar formation and sensory axon regeneration were analyzed with immunohistochemistry and transganglionic tracing. RESULTS: hNPs and bNCSCs form similar gaps in the glial scar, but unlike hNPs, bNCSCs contribute Mts1/S100A4 (calcium-binding protein) expression to the scar and do not assist sensory axon regeneration. CONCLUSION: bNCSC transplants contribute nonpermissive Mts1/S100A4-expressing cells to the glial scar after dorsal root avulsion.


Assuntos
Cicatriz/patologia , Cicatriz/terapia , Crista Neural/transplante , Transplante de Células-Tronco , Animais , Astrócitos/metabolismo , Axônios/patologia , Biomarcadores/metabolismo , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração Nervosa , Crista Neural/citologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia
14.
Neurotherapeutics ; 14(3): 773-783, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28070746

RESUMO

ALS is a devastating disease resulting in degeneration of motor neurons (MNs) in the brain and spinal cord. The survival of MNs strongly depends on surrounding glial cells and neurotrophic support from muscles. We previously demonstrated that boundary cap neural crest stem cells (bNCSCs) can give rise to neurons and glial cells in vitro and in vivo and have multiple beneficial effects on co-cultured and co-implanted cells, including neural cells. In this paper, we investigate if bNCSCs may improve survival of MNs harboring a mutant form of human SOD1 (SOD1G93A) in vitro under normal conditions and oxidative stress and in vivo after implantation to the spinal cord. We found that survival of SOD1G93A MNs in vitro was increased in the presence of bNCSCs under normal conditions as well as under oxidative stress. In addition, when SOD1G93A MN precursors were implanted to the spinal cord of adult mice, their survival was increased when they were co-implanted with bNCSCs. These findings show that bNCSCs support survival of SOD1G93A MNs in normal conditions and under oxidative stress in vitro and improve their survival in vivo, suggesting that bNCSCs have a potential for the development of novel stem cell-based therapeutic approaches in ALS models.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Neurônios Motores/patologia , Crista Neural , Células-Tronco Neurais , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Nus , Mutação , Crista Neural/transplante , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco , Superóxido Dismutase-1/genética
15.
J Tissue Eng Regen Med ; 11(1): 129-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-24753366

RESUMO

Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Células-Tronco Embrionárias/citologia , Crista Neural/citologia , Neurônios/citologia , Raízes Nervosas Espinhais/patologia , Animais , Axônios/fisiologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Transplante de Células , Feminino , Gânglios Espinais/citologia , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia
16.
Sci Rep ; 5: 10666, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26053681

RESUMO

Dorsal root avulsion results in permanent impairment of sensory functions due to disconnection between the peripheral and central nervous system. Improved strategies are therefore needed to reconnect injured sensory neurons with their spinal cord targets in order to achieve functional repair after brachial and lumbosacral plexus avulsion injuries. Here, we show that sensory functions can be restored in the adult mouse if avulsed sensory fibers are bridged with the spinal cord by human neural progenitor (hNP) transplants. Responses to peripheral mechanical sensory stimulation were significantly improved in transplanted animals. Transganglionic tracing showed host sensory axons only in the spinal cord dorsal horn of treated animals. Immunohistochemical analysis confirmed that sensory fibers had grown through the bridge and showed robust survival and differentiation of the transplants. Section of the repaired dorsal roots distal to the transplant completely abolished the behavioral improvement. This demonstrates that hNP transplants promote recovery of sensorimotor functions after dorsal root avulsion, and that these effects are mediated by spinal ingrowth of host sensory axons. These results provide a rationale for the development of novel stem cell-based strategies for functionally useful bridging of the peripheral and central nervous system.


Assuntos
Axônios/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/fisiologia , Células-Tronco/fisiologia , Animais , Gânglios Espinais/fisiologia , Humanos , Masculino , Camundongos , Medula Espinal/fisiologia
17.
Cell Transplant ; 24(11): 2263-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25581301

RESUMO

The present study aimed to develop techniques for surface coating of islets with neural crest stem cells (NCSCs) in order to enable cotransplantation to the clinically used liver site and then investigate engraftment and function intraportally of such bioengineered islets. Mouse islets were coated during incubation with enhanced green fluorescent protein (EGFP)-expressing mouse NCSCs and transplanted into the portal vein to cure diabetic mice. An intravenous glucose tolerance test was performed at 1 month posttransplantation. Islet grafts were retrieved and evaluated for vascular density, nerves, and glial cells. NCSCs expressed a vast number of key angiogenic and neurotrophic factors. Mice transplanted with NCSC-bioengineered islets responded better to the glucose load than recipient mice with control islets. NCSCs remained present in the vicinity or had often migrated into the NCSC-coated islets, and an improved islet graft reinnervation and revascularization was observed. Transplanted NCSCs differentiated into both glial and neural cells in the islet grafts. We conclude that bioengineering of islets with NCSCs for intraportal transplantation provides a possibility to improve islet engraftment and function. Pending successful establishment of protocols for expansion of NCSCs from, for example, human skin or bone marrow, this strategy may be applied to clinical islet transplantation.


Assuntos
Diabetes Mellitus/terapia , Transplante das Ilhotas Pancreáticas , Crista Neural/citologia , Transplante de Células-Tronco , Engenharia Tecidual , Aloxano , Animais , Diabetes Mellitus/induzido quimicamente , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta
18.
Int J Neurosci ; 125(7): 547-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25077520

RESUMO

PURPOSE: Neural crest stem cells derived from the boundary cap (bNCSCs), markedly promote survival, proliferation and function of insulin producing ß-cells in vitro and in vivo after coculture/transplantation with pancreatic islets [ 1, 2 ]. Recently, we have shown that beneficial effects on ß-cells require cadherin contacts between bNCSCs and ß-cells [ 3, 4 ]. Here we investigated whether hair follicle (HF) NCSCs, a potential source for human allogeneic transplantation, exert similar positive effects on ß-cells. MATERIALS AND METHODS: We established cocultures of HF-NCSCs or bNCSCs from mice expressing enhanced green fluorescent protein together with pancreatic islets from DxRed expressing mice or NMRI mice and compared their migration towards islet cells and effect on proliferation of ß-cells as well as intracellular relations between NCSCs and islets using qRT-PCR analysis and immunohistochemistry. RESULTS: Whereas both types of NCSCs migrated extensively in the presence of islets, only bNCSCs demonstrated directed migration toward islets, induced ß-cell proliferation and increased the presence of cadherin at the junctions between bNCSCs and ß-cells. Even in direct contact between ß-cells and HF-NCSCs, no cadherin expression was detected. CONCLUSIONS: These observations indicate that HF-NCSCs do not confer the same positive effect on ß-cells as demonstrated for bNCSCs. Furthermore, these data suggest that induction of cadherin expression by HF-NCSCs may be useful for their ability to support ß-cells in coculture and after transplantation.


Assuntos
Folículo Piloso/citologia , Ilhotas Pancreáticas/fisiologia , Crista Neural/citologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Actinas/genética , Actinas/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Tempo
19.
BMC Neurosci ; 15: 60, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24884373

RESUMO

BACKGROUND: The boundary cap is a transient group of neural crest-derived cells located at the presumptive dorsal root transitional zone (DRTZ) when sensory axons enter the spinal cord during development. Later, these cells migrate to dorsal root ganglia and differentiate into subtypes of sensory neurons and glia. After birth when the DRTZ is established, sensory axons are no longer able to enter the spinal cord. Here we explored the fate of mouse boundary cap neural crest stem cells (bNCSCs) implanted to the injured DRTZ after dorsal root avulsion for their potential to assist sensory axon regeneration. RESULTS: Grafted cells showed extensive survival and differentiation after transplantation to the avulsed DRTZ. Transplanted cells located outside the spinal cord organized elongated tubes of Sox2/GFAP expressing cells closely associated with regenerating sensory axons or appeared as small clusters on the surface of the spinal cord. Other cells, migrating into the host spinal cord as single cells, differentiated to spinal cord neurons with different neurotransmitter characteristics, extensive fiber organization, and in some cases surrounded by glutamatergic terminal-like profiles. CONCLUSIONS: These findings demonstrate that bNCSCs implanted at the site of dorsal root avulsion injury display remarkable differentiation plasticity inside the spinal cord and in the peripheral compartment where they organize tubes associated with regenerating sensory fibers. These properties offer a basis for exploring the ability of bNCSCs to assist regeneration of sensory axons into the spinal cord and replace lost neurons in the injured spinal cord.


Assuntos
Crista Neural/transplante , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Neuroglia/patologia , Neurônios/patologia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia , Animais , Diferenciação Celular , Feminino , Regeneração Nervosa , Crista Neural/citologia , Neuroglia/classificação , Neuroglia/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/cirurgia
20.
Nanomedicine (Lond) ; 9(16): 2457-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24661257

RESUMO

AIM: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous nanoparticles could be effective for stem cell differentiation in vitro. MATERIALS & METHODS: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. RESULTS: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells. CONCLUSION: Repeated administration of soluble factors into a culture medium can be avoided due to a sustained release effect using mesoporous silica.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Nanopartículas/administração & dosagem , Animais , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Nanopartículas/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...